Locating the Most Relevant Identification Information in Spectral Cubes and Similar Large Data Sets

Robert K. McConnell WAY-2C Arlington, Massachusetts rkm@way2c.com http://www.way2c.com

Typical Object Detection Steps

- 1. Choose the target class(es).
- 2. Choose attributes to be sensed.
- 3. Acquire training data set (e.g. image).
- 4. Train the system.
- 5. Acquire a test data set.
- 6. Classify the test data set.
- 7. Locate blobs representing the class(es) of interest.

Typical Object Detection Steps

- 1. Choose the target class(es).
- 2. Choose attributes to be sensed.
- 3. Acquire training data set (e.g. image).
- 4. Train the system
- 5. Acquire a test data set.
- 6. Classify the test data set.
- 7. Locate blobs representing the class(es) of interest.

Example: hyperspectral "cube"

Find optimum data subset for classification **WAY-2C**

Classification Objectives

acquired bands and more

Example: "Green Chips" Hyperspectral Cube

- 80 bands
- 12 bits A/D/pixel/band
- 16 total bits/pixel/band
- ~1K bits/pixel

Courtesy Resonon, Inc.

"True Color" Image From Cube

"Green Chips"

	Band	nm
R	40	642
G	25	550
B	10	458

8 Classes

Image Courtesy Resonon, Inc.

Required: Band combination to differentiate reliably. way-20

"High Contrast" Image From Cube

	Band	nm
R	60^*	764
G	57*	745
В	17*	501

*some high order bits discarded

8 classes can be differentiated reliably.

Pixel by pixel interpretation of high contrast "intermediate" image.

Maximum likelihood classification based on ~30K pixel regions.

Not all bands are equally relevant.

Band 60 PSPA=67.88%

Base Image Courtesy Resonon, Inc.

Band 00 PSPA=14.01%

Base Image Courtesy Resonon, Inc.

Band 79 PSPA=27.19%

Base Image Courtesy Resonon, Inc.

Entropy as a measure of uncertainty

Not all positions within "band" are equally relevant.

Objective: Find optimum combination of "bands" and data "windows" within those bands to differentiate the classes of interest.

relevance

It can be shown that the relevant information in the data set *D* for differentiating the class set *C* (known as the mutual information between *C* and *D*) is given by

$$relevance = H(C) + H(D) - H(C\&D)$$
(3)

where:

H(C) is the entropy of the class probability distribution, H(D) is the entropy of the data distribution and H(C&D) is the entropy of the joint distribution of C&D.

uncertainty

It can also be shown that information required to completely specify the class once the data is known, must be given by

uncertainty = H(C&D) - H(D)

(6)

= 0 when C and D are perfectly correlated and - U(C) for po correlation between C a

= H(C) for no correlation between C and D.

Maximizing relevance minimizes uncertainty.

Finding Most Relevant Data to Construct Intermediate Image for Classification

Training Regions

Base Image Courtesy Resonon, Inc.

WAY-2C

24

Most relevant window: measured single band information contribution.

Image constructed from single most relevant band and window only.

Plane	Band	nm
R	60*	764

rel = 2.318 bits PSPA = 67.88%

Relevance: (band & window) pair information contribution (band 60 window fixed)

Image constructed from most relevant band pair.

Plane	Band	nm
R	60*	764
В	17*	501

rel = 2.742 bits PSPA = 91.07%

Relevance: (band & window) triplet information contribution (bands 60,17 windows fixed)

Intermediate image from most relevant (band & window) triplet.

Plane	Band	nm
R	60^*	764
G	57*	745
В	17*	501

rel = 2.844 bits PSPA = 97.74%

Automatically Selected Bands

31

Now, using only optimum data subset:

- 1. Construct an "intermediate" image.
- 2. Train using the same class training regions as for locating that subset.
- 3. Perform maximum likelihood interpretations on this and similar images based only on the optimum data subset.

Pixel by pixel interpretation of most relevant band triplet image.

Pixel by pixel class # 1 extraction

WAY-2C

Blob location and processing.

"True Color" TERRAIN Image

HYDICE bands 49,35,15

36

Terrain: Mean Spectra and Selected Bands

"Most Relevant" TERRAIN Image

HYDICE bands 199,52,17

> 98% data
reduction from
original
hyperspectral
cube.

bare soil thick grass

thin grass

road trees

Interpreted TERRAIN Image

Based on HYDICE bands 199,52,17

uncertainty = 0.48 bits PSPA = 71.8%

bare soil thick grass

thin grass

road

trees

Predicted Agreement

We define the *PSPA*, or predicted single pixel agreement (with training) by:

$$\log(PSPA) = H(D) - H(C\&D)$$

(7)

"Thin Grass" Training Region Detail

Assigned training regions may not be "pure", leading to system accuracy <u>underestimation</u>.

"Thin Grass" Training Region Classification

WAY-2C

System may correctly classify but assumes it's wrong, thus <u>underestimating</u> its own accuracy. Locating the Most Relevant Identification Information in Spectral Cubes and Similar Large Data Sets

End

Technology Available US Patent 8,918,347

Robert K. McConnell WAY-2C rkm@way2c.com

